What is Kubernetes

What is Kubernetes

What is Kubernetes?

Kubernetes, at its basic level, is a system for running and coordinating containerized applications across a cluster of machines. It is a platform designed to completely manage the life cycle of containerized applications and services using methods that provide predictability, scalability, and high availability.

As a Kubernetes user, you can define how your applications should run and the ways they should be able to interact with other applications or the outside world. You can scale your services up or down, perform graceful rolling updates, and switch traffic between different versions of your applications to test features or rollback problematic deployments.

Kubernetes provides interfaces and composable platform primitives that allow you to define and manage your applications with high degrees of flexibility, power, and reliability.

Kubernetes Architecture

To understand how Kubernetes is able to provide these capabilities, it is helpful to get a sense of how it is designed and organized at a high level. Kubernetes can be visualized as a system built in layers, with each higher layer abstracting the complexity found in the lower levels. At its base, Kubernetes brings together individual physical or virtual machines into a cluster using a shared network to communicate between each server. This cluster is the physical platform where all Kubernetes components, capabilities, and workloads are configured.

The machines in the cluster are each given a role within the Kubernetes ecosystem. One server (or a small group in highly available deployments) functions as the master server. This server acts as a gateway and brain for the cluster by exposing an API for users and clients, health checking other servers, deciding how best to split up and assign work (known as “scheduling”), and orchestrating communication between other components. The master server acts as the primary point of contact with the cluster and is responsible for most of the centralized logic Kubernetes provides.

The other machines in the cluster are designated as nodes: servers responsible for accepting and running workloads using local and external resources. To help with isolation, management, and flexibility, Kubernetes runs applications and services in containers, so each node needs to be equipped with a container runtime (like Docker or rkt). The node receives work instructions from the master server and creates or destroys containers accordingly, adjusting networking rules to route and forward traffic appropriately.

As mentioned above, the applications and services themselves are run on the cluster within containers. The underlying components make sure that the desired state of the applications matches the actual state of the cluster. Users interact with the cluster by communicating with the main API server either directly or with clients and libraries. To start up an application or service, a declarative plan is submitted in JSON or YAML defining what to create and how it should be managed. The master server then takes the plan and figures out how to run it on the infrastructure by examining the requirements and the current state of the system. This group of user-defined applications running according to a specified plan represents Kubernetes’ final layer.

Master Server Components

As we described above, the master server acts as the primary control plane for Kubernetes clusters. It serves as the main contact point for administrators and users, and also provides many cluster-wide systems for the relatively unsophisticated worker nodes. Overall, the components on the master server work together to accept user requests, determine the best ways to schedule workload containers, authenticate clients and nodes, adjust cluster-wide networking, and manage scaling and health checking responsibilities.

These components can be installed on a single machine or distributed across multiple servers. We will take a look at each of the individual components associated with master servers in this section.


One of the fundamental components that Kubernetes needs to function is a globally available configuration store. The etcd project, developed by the team at CoreOS, is a lightweight, distributed key-value store that can be configured to span across multiple nodes.

Kubernetes uses etcd to store configuration data that can be accessed by each of the nodes in the cluster. This can be used for service discovery and can help components configure or reconfigure themselves according to up-to-date information. It also helps maintain cluster state with features like leader election and distributed locking. By providing a simple HTTP/JSON API, the interface for setting or retrieving values is very straight forward.

Like most other components in the control plane, etcd can be configured on a single master server or, in production scenarios, distributed among a number of machines. The only requirement is that it be network accessible to each of the Kubernetes machines.


One of the most important master services is an API server. This is the main management point of the entire cluster as it allows a user to configure Kubernetes’ workloads and organizational units. It is also responsible for making sure that the etcd store and the service details of deployed containers are in agreement. It acts as the bridge between various components to maintain cluster health and disseminate information and commands.

The API server implements a RESTful interface, which means that many different tools and libraries can readily communicate with it. A client called kubectl is available as a default method of interacting with the Kubernetes cluster from a local computer.


The controller manager is a general service that has many responsibilities. Primarily, it manages different controllers that regulate the state of the cluster, manage workload life cycles, and perform routine tasks. For instance, a replication controller ensures that the number of replicas (identical copies) defined for a pod matches the number currently deployed on the cluster. The details of these operations are written to etcd, where the controller manager watches for changes through the API server.

When a change is seen, the controller reads the new information and implements the procedure that fulfills the desired state. This can involve scaling an application up or down, adjusting endpoints, etc.


The process that actually assigns workloads to specific nodes in the cluster is the scheduler. This service reads in a workload’s operating requirements, analyzes the current infrastructure environment, and places the work on an acceptable node or nodes.

The scheduler is responsible for tracking available capacity on each host to make sure that workloads are not scheduled in excess of the available resources. The scheduler must know the total capacity as well as the resources already allocated to existing workloads on each server.


Kubernetes can be deployed in many different environments and can interact with various infrastructure providers to understand and manage the state of resources in the cluster. While Kubernetes works with generic representations of resources like attachable storage and load balancers, it needs a way to map these to the actual resources provided by non-homogeneous cloud providers.

Cloud controller managers act as the glue that allows Kubernetes to interact providers with different capabilities, features, and APIs while maintaining relatively generic constructs internally. This allows Kubernetes to update its state information according to information gathered from the cloud provider, adjust cloud resources as changes are needed in the system, and create and use additional cloud services to satisfy the work requirements submitted to the cluster.

Node Server Components

In Kubernetes, servers that perform work by running containers are known as nodes. Node servers have a few requirements that are necessary for communicating with master components, configuring the container networking, and running the actual workloads assigned to them.

A Container Runtime

The first component that each node must have is a container runtime. Typically, this requirement is satisfied by installing and running Docker, but alternatives like rkt and runc are also available. The container runtime is responsible for starting and managing containers, applications encapsulated in a relatively isolated but lightweight operating environment. Each unit of work on the cluster is, at its basic level, implemented as one or more containers that must be deployed. The container runtime on each node is the component that finally runs the containers defined in the workloads submitted to the cluster.


The main contact point for each node with the cluster group is a small service called kubelet. This service is responsible for relaying information to and from the control plane services, as well as interacting with the etcd store to read configuration details or write new values.

The kubelet service communicates with the master components to authenticate to the cluster and receive commands and work. Work is received in the form of a manifest which defines the workload and the operating parameters. The kubelet process then assumes responsibility for maintaining the state of the work on the node server. It controls the container runtime to launch or destroy containers as needed.


To manage individual host subnetting and make services available to other components, a small proxy service called kube-proxy is run on each node server. This process forwards requests to the correct containers, can do primitive load balancing, and is generally responsible for making sure the networking environment is predictable and accessible, but isolated where appropriate.

comments powered by Disqus